
Ecology Letters. 2023;00:1–13. wileyonlinelibrary.com/journal/ele   | 1© 2023 John Wiley & Sons Ltd.

INTRODUCTION

Organisms must repeatedly make decisions that bal-
ance risk and reward. For example, foraging animals 
must choose whether to continue eating food that they 
have already found or move on in the hopes of find-
ing something better. Optimal Foraging Theory is the 
study of optimising such a decision process. Due to its 
critical importance for understanding animal behav-
iour and potential applications in industrial, social and 
computational science, optimal foraging has been the 
subject of intense theoretical and empirical work for 
over 60 years (Holling,  1959; Mangel,  2015; Pyke,  1984; 
Stephens, 2008).

Classical Optimal Foraging Theory considers a for-
ager in a region with heterogeneously distributed re-
sources. The forager encounters a patch of resources, 
depletes resources in the patch at a diminishing rate, 
and must choose when to depart and seek out a new 
patch (MacArthur & Pianka, 1966). The Marginal Value 
Theorem provides a criterion for when a forager should 
abandon a patch and switch to another: exactly when 
the expected rate of return for remaining in a patch 
drops below the expected average rate across all patches 
(Charnov, 1976a). A related finding applies to Optimal 

Diet Choice, in which a forager must choose between 
different food types. By comparing the rates of return 
(the ratio of expected value to handling time) of different 
resource types in the environment, one can determine 
which types of food should be included in a forager's 
diet, and in what order of preference (Charnov, 1976b).

While elegant, these simple rate- maximisation forag-
ing methods fail to capture the full complexity of real 
foraging behaviour (Hirvonen & Ranta,  1996; Mangel 
et al., 1988; Nonacs, 2001). One central issue is the tradeoff 
between gathering food and the risk of becoming food 
for something else. A variety of approaches have been 
developed to incorporate predation risk into optimal for-
aging (Houtman & Dill, 1998; Yearsley et al., 2001), but 
perhaps the most well- known is the concept of giving- up 
densities, or GUDs (Brown,  1988; Brown et al.,  1999). 
Consider a forager depleting resources in a patch, such 
as a squirrel digging for seeds in an exposed area of dirt, 
where the risk of being attacked by a bird is high. The 
GUD is the density of seeds remaining –  that is, rate of 
food return –  at which the squirrel should abandon the 
patch because it estimates that continuing to forage in 
an exposed setting poses a hazard that is not worth a 
lower level of reward (Brown, 1988). The GUD approach 
has been applied to a range of experimental systems 

L E T T E R

Strategy maps: Generalised giving- up densities for optimal foraging

Emerson Arehart1  |    Jody R. Reimer2  |    Frederick R. Adler2

Received: 14 June 2022 | Revised: 8 December 2022 | Accepted: 14 December 2022

DOI: 10.1111/ele.14160  

1Department of Biology, University of 
Pennsylvania, Philadelphia, Pennsylvania, 
USA
2Department of Mathematics and School 
of Biological Sciences, University of Utah, 
Salt Lake City, Utah, USA

Correspondence
Emerson Arehart, Department of Biology, 
433 S University Ave, Philadelphia, PA 
19104, USA.
Email: arehart@sas.upenn.edu

Funding information
The Modeling the Dynamics of Life Fund

Editor: Minus van Baalen

Abstract
Finding a common currency for benefits and hazards is a major challenge in optimal 
foraging theory, often requiring complex computational methods. We present a 
new analytic approach that builds on the Marginal Value Theorem and giving- up 
densities while incorporating the nonlinear effect of predation risk. We map the 
space of all possible environments into strategy regions, each corresponding to a 
discrete optimal strategy. This provides a generalised quantitative measure of the 
trade- off between foraging rewards and hazards. This extends a classic optimal 
diet choice rule- of- thumb to incorporate the hazard of waiting for better resources 
to appear. We compare the dynamics of optimal decision- making for three foraging 
life- history strategies: One in which fitness accrues instantly, and two with delays 
before fitness benefit is accrued. Foragers with delayed- benefit strategies are more 
sensitive to predation risk than resource quality, as they stand to lose more fitness 
from a predation event than instant- accrual foragers.

K E Y W O R D S
diet choice, giving up density, landscape of fear, Markov decision process, optimal foraging, 
stochastic dynamic programming

www.wileyonlinelibrary.com/journal/ele
mailto:﻿
https://orcid.org/0000-0002-0862-4219
https://orcid.org/0000-0001-7742-2728
https://orcid.org/0000-0002-9022-3157
mailto:arehart@sas.upenn.edu


2 |   STRATEGY MAPS

(Bedoya- Perez et al., 2013), allowing comparison of risk 
(or perceived risk) in different environments.

Analysing GUDs poses several key challenges, in-
cluding potentially nonlinear relationships between 
harvest rate, energetic gain and predation risk (Bedoya- 
Perez et al.,  2013). In practice, GUD approaches have 
most commonly been employed qualitatively, for exam-
ple comparing the “fear” foragers feel in open versus 
closed terrain (Brown et al., 1999). Quantitative analysis 
of fear behaviour requires finding a common currency 
for all factors affecting fitness (Krebs & Davies,  1978; 
Mangel,  2015; Mangel & Clark,  1986; McNamara & 
Houston,  1986). Previously, this required more com-
plex mathematical tools such as Stochastic Dynamic 
Programming.

Stochastic Dynamic Programming (SDP) is a versatile 
tool for finding optimal strategies for complex, iterative 
decision processes (Bellman, 1957; Houston et al., 1993; 
Mangel, 2015). In SDP, decision processes, in which de-
cisions must be made at a sequence of discrete times, 
are codified as recursive mathematical expressions. The 
value of any chain of decisions is computed by iterative 
calculation either forward or backward in time, depend-
ing on the structure of the problem. Foraging decision- 
making processes have been analysed with SDP (Brodin 
et al., 2017; Houston et al., 1988; Iwasa et al., 1984; Pirotta 
et al., 2019; Reimer et al., 2019b). SDP has also been fruit-
fully applied to finding optimal strategies in domains 
ranging from wildlife management/conservation reserve 
design to epidemiology and industrial optimisation (re-
viewed in Marescot et al. (2013)).

SDP methods often track the “state” of a forager, such 
as fat reserves, and factor the state into decision- making: 
For example, a starving bird may tolerate a high degree 
of predation risk in order to get a certain food reward, 
whereas a satiated one might only claim that food re-
ward if predation risk is much lower. In such an analysis, 
the feedback between decisions and forager states must 
be tracked, greatly increasing the computational com-
plexity of a problem (Mangel et al.,  1988). Techniques 
exist for speeding up or approximating SDP for complex 
state- dependent SDP problems (Fackler,  2018; Nicol & 
Chadès, 2011; Reimer et al., 2019a).

Classical Optimal Foraging Theory produced many 
“rules of thumb” that might allow foragers to approxi-
mate optimal strategies (Houston et al., 1993; Pyke, 1984). 
Many such “rules” fell out of favour, as they failed to 
explain the full range of observed foraging behaviours. 
GUD methods are easy to interpret conceptually and 
yield useful insight into the fitness cost of predation but 
can be challenging to analyse quantitatively (Bedoya- 
Perez et al., 2013). SDP enables elaborate computations 
and can reveal optimal strategies for specific complex 
problems, but produces results for each specific case, 
rather than general rules.

Here, we present a mathematical framework that 
extends rate- based optimal foraging and optimal diet 

choice to include nonlinear trade- offs between food and 
predation risk. We use this framework to extend the rule 
of thumb from Gilliam and Fraser (1987) to incorporate 
the hazard from taking no resources, revealing addi-
tional complexity in optimal decision behaviour. Our 
method balances predation risk and expected reward, 
generalising GUDs (Brown,  1988; Brown et al.,  1999) 
to multiple resource- type environments (as in Optimal 
Diet Choice theory) and without requiring predation- 
free refugia. This maps all possible environments to their 
corresponding optimal strategies, providing a baseline 
for understanding forager behaviour. Our framework 
provides a high- level view of how strategies change as a 
forager's environment changes, quantifying the value of 
information for the forager.

We demonstrate the versatility of our framework 
by comparing strategy dynamics for three biologically 
relevant fitness paradigms: EGGS, in which fitness is 
measured by total resources collected (analogous to the 
rate- maximising foragers from classic optimal foraging, 
but with predation risk included), AON (all or nothing), 
in which a forager collects resources on a foraging bout 
but gains no benefit unless it survives until a fixed termi-
nal time, and PRE (periodic return), in which the forager 
engages in multiple, shorter trips, only receiving fitness 
benefits if it survives to the end of each trip. These fit-
ness paradigms are special cases of the canonical fitness 
equations in Mangel (2015). The threshold for accepting 
a resource is much more sensitive to predation risk in the 
AON and PRE paradigms, due to hazard compounding 
over the course of a foraging bout. We close by discuss-
ing the implications of our approach for the value of in-
formation and learning.

M ETHODS

Consider an environment with multiple resource types 
and a forager encountering them in discrete time. The 
granularity of time steps can be chosen at whatever scale 
is appropriate for the problem. For foraging bees, a time 
step might be 1 s; for lions, a time step might be hours 
or days (Mangel et al., 1988). �i is the probability of en-
countering resource i on a given time step. The forager 
can choose to consume resource i if it appears, which oc-
cupies the animal for the handling time (hi time steps), or 
it can skip the resource and advance one time step. This 
reflects the opportunity cost of taking resource i, which 
is resources that the organism would encounter if it was 
not busy handling resource i. If multiple resources ap-
pear at the same time, the forager can choose only one of 
the resources; if no resources appear, the forager moves 
forward one time step.

If resource i  is consumed, the organism receives 
a nutritional reward with expected value vi, and sur-
vives with probability qhi

i
 (corresponding to a risk of 

predation or other hazard of 1 − qi applied at each of 
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hi time steps during the handling time). If the forager 
chooses to wait and collect no resources, it survives 
with probability q0 , again modelling predation risks as 
well as other generalised hazards, including the risk of 
starvation.

The forager determines whether to consume or skip 
resources based on a strategy Z which ranks resources: 
it will accept resources in the order dictated by Z, and 
reject any resources not included in Z. The foraging 
process continues until it is terminated either due to 
the death of the individual, or by reaching an assigned 
terminal time T . We assume that the forager can fin-
ish consuming any resource it encounters on or before 
time T , even if the processing time extends beyond T  . 
See Appendix C for a graphical explanation of the for-
aging setup.

For the remainder of this paper, we consider environ-
ments in which there are only two resource types. Our 
results generalise to environments with more resource 
types, but are much easier to calculate and visualise 
with two. In a two- resource system, there are five pos-
sible strategies: accept nothing 

(
Z =

{
�
})

, only ever 
accept resource 1, (Z = {1}), only ever accept resource 
2, (Z = {2}) , accept resource 1 when available but take 
resource 2 if 1 is not available, (Z = {1, 2}), and the con-
verse (accept resource 2 when available but take resource 
1 if 2 is not available, Z = {2, 1}).

The strategy which maximises fitness depends on 
what we call the fitness paradigm, which determines 
how fitness benefits and costs affect a forager. Most 
classical optimal foraging theory is concerned with 
maximising foraging rates, but some organisms follow 
life- history strategies for which rate is not the correct 
metric. For example, if an individual worker bee must 
return to the hive in order to benefit from the resources 
it has collected, then the fitness cost of being killed by 
a predator depends on how many resources it has col-
lected since leaving the hive. For a solitary parasitic 
wasp, which intersperses egg laying with foraging, the 
cost of predation is not dependent on the whole for-
aging bout, since it continuously converts food into 
offspring. These differences are captured by the total 
fitness function, Φ(Z), which summarises the expected 
overall fitness obtained by following a strategy Z. The 
goal of our method is to find the strategy Z that max-
imises Φ(Z), the total fitness that has accumulated by 
the end of a foraging bout.

For the first part of this paper, we will concern our-
selves with the EGGS fitness paradigm, in which the 
organism instantaneously converts the reward vi into 
“eggs,” and thus into fitness, as long as it survives feed-
ing on resource i. This is a special case of the “resource 
allocation” canonical equation of SDP, in which fitness 
is accumulated while the foraging process continues 
(Mangel,  2015). EGGS is closest to the classic rate- 
maximising approach to Optimal Foraging and Optimal 
Diet Choice, while still incorporating nonlinear hazards.

Mathematical framework

We use the probabilistic formulation of SDP to incor-
porate nonlinear effects of predation into an optimal 
foraging framework. Consistent with classical optimal 
foraging theory, however, we ignore state dependence. 
In our recursive equations, we maximise total foraging 
success while accounting for the differential risks of pre-
dation from each possible action (taking resource 1, tak-
ing resource 2 or waiting). We introduce Ft, the expected 
total reward accrued from time t up to and including the 
final time step T . The goal is to determine which Z max-
imises the total fitness ΦEGGS(Z) = F1 in an environment 
as defined by �i, vi, hi and qi.

At T , the forager encounters only resource 1 with 
probability �1

(
1 − �2

)
, only resource 2 with probability 

�2

(
1 − �1

)
, no resources with probability 

(
1 − �1

)
(1 − �2

), and both resources simultaneously with probability 
�1�2 . We calculate returns from a maximising strategy, 
starting with the expected total rewards accrued on the 
final time step, FT:

Any resource appearing on the final time step T  
should be accepted, since there are no future rewards 
the forager could forego by doing so. Going back one 
time step, the forager still encounters resources at the 
same rates, but the decision involves different consider-
ations. The forager could forego a lesser reward at time 
T − 1 in the hopes of getting something better at time T  . 
Following this logic further backward in time yields a 
recursive relationship (Mangel et al., 1988):

with Ft = 0 for t > T  (the forager may finish handling 
any resource it finds on or before time T , but it can-
not accept any new resources after T ). The four terms 
in Equation  2 correspond to the four possible situa-
tions the forager could face for making a decision: 
Only resource 1 available, only resource 2 available, 
both resources available and neither resource avail-
able, respectively. The expressions inside the max func-
tions correspond to the reward from each option the 
forager can take. Recursively computing this relation 
back through F1 determines a strategy for accepting or 
rejecting a resource at every time step, and a hierar-
chy for accepting resources if multiple resources ap-
pear at the same time. The strategy may change over 

(1)

FT = �1

(
1 − �2

)
v1q

h1
1
+ �2

(
1 − �1

)
v2q

h2
2
+ �1�2max

(
v1q

h1
1
, v2q

h2
2

)
.

(2)

Ft=�1

(
1−�2

)
max

((
v1+Ft+h1

)
q
h1
1
,Ft+1q0

)
+

�2

(
1−�1

)
max

((
v2+Ft+h2

)
q
h2
2
,Ft+1q0

)
+

�1�2max
((
v1+Ft+h1

)
q
h1
1
,
(
v2+Ft+h2

)
q
h2
2
,Ft+1q0

)
+(

1−�1

)(
1−�2

)
Ft+1q0,
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time, especially towards the end of the foraging bout. 
However, to benefit from such a change in strategy, the 
forager would have to know exactly when the forag-
ing bout will end, and the difference in total reward 
resulting from changing the strategy for only a few 
time steps is usually small compared to the overall 
expected fitness over many time steps. In general, we 
will instead seek the stationary strategy, which is the 
fixed decision rule that offers the best return applied 
across the foraging bout. The system converges to the 
stationary strategy for realistic foraging times (Mangel 
et al., 1988).

By finding the environmental parameter combina-
tions where optimal strategies change, we can construct 
a global map of optimal strategies across parameter 
space. Determining the optimal strategy for a given 
environment is then as straightforward as locating the 
environmental parameters of interest on the strategy 
map.

Strategy maps

The optimal strategy Z for a specific environment (speci-
fied by �i, vi, hi and qi) can be determined with SDP for 
all combinations of all possible discretised values of each 
parameter (Figure 1b). However, we would like to find 
an analytical way to map every possible combination of 
�i, vi, hi and qi to one of these strategies. We will focus 
primarily on the relationship between vi and the optimal 
strategy, but a similar approach can be applied to other 
environmental parameters.

Transitions between accepting and rejecting re-
source i  occur where the expected value from a strategy 

including resource i  equals the expected value from a 
strategy excluding it. This transition always occurs 
along a straight line in the v1 − v2 plane, as it depends 
on the ratio of v1 to v2 (Figure 1). The slopes of these 
lines are v∗

2
, the transition value of v2 when v1 = 1, and 1

v∗
1, where v∗

1
 is the transition value of v1 when v2 = 1. The 

transition in the order of preference between the two 
resources, ṽ, occurs where the expected fitness value 
of accepting resource 1 exactly equals the expected 
fitness value of accepting resource 2. In Figure 1c, we 
plot the ratio of the fitness from the best strategy to the 
fitness from the second- best strategy across the same 
parameter ranges, showing the sensitivity of foraging 
success to choice of foraging strategy. If �1 = �2 = 1, 
meaning that both resources are encountered on every 
time step, v∗

1
 and v∗

2
 are undefined, because a forager 

should always take only the preferred resource (so the 
strategy map reduces to a single boundary between 
Z = {1} and Z = {2}).

The following sections describe our methods for 
constructing and analysing strategy maps. We first 
derive exact expressions for the total fitness functions 
Φ(Z) for each possible strategy Z in the EGGS para-
digm. By setting pairs of these expressions equal to 
each other and solving for vi, we find v∗

1
, v∗

2
 and ṽ an-

alytically. We compare these expressions with “rules 
of thumb” from Optimal Foraging and Optimal Diet 
Choice literature, recovering and extending previous 
results on balancing resource quality with predation 
risk. We further illustrate the power and versatility of 
the strategy maps method by applying the same ap-
proach to compare EGGS to two other biologically- 
inspired fitness paradigms ref lecting different 
life- history strategies.

F I G U R E  1  Strategy regions in the v1 − v2 plane, (a) as calculated by our analytic method and (b) as computed by SDP with a horizon of 
5000 timesteps. Both methods yield the same mapping of optimal strategies, with the SDP method converging on the analytic results. In (b), 
each pixel represents one SDP calculation for a specific v1, v2 pair. (c) Shows the ratio of the second best strategy to the best strategy for the same 
parameter range as (a- b); the best two strategies become equal right at lines with slopes 1

v∗
1

, v∗
2
 and ṽ. For all figures, �1 = 0.3, �2 = 0.2, h1 = 6 , 

h2 = 5, q0 = 0.999, q1 = .9981 and q2 = .9983 .
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Computing v∗
2
 and ṽ

We find v∗
2
 by setting the total fitness functions Φ({1, 2}) 

and Φ({1}) equal to each other and solving for v2. We 
first derive expressions for the total fitness functions in 
terms of environmental parameters �i, vi, hi and qi from 
the recursive expressions used to formulate such a prob-
lem for SDP.

Consider the case where the handling time is identical 
for both resources, h = h1 = h2. For strategy Z = {1, 2}, 
the expected fitness reward per action (accepting a re-
source) is f = �1q

h
1
v1 + �2

(
1 − �1

)
qh
2
v2. At each time step, 

the probability of accepting a resource and surviving h 
time steps is a = �1q

h
1
+ �2

(
1 − �1

)
qh
2
. The probability of 

not encountering any resource and surviving 1 time step 
is b =

(
1 − �1

)(
1 − �2

)
q0. Iterating backward in time, the 

cumulative fitness at time t, Ft, is given by the recursion:

where Ft = 0 for t > T. Exploiting the recursive nature of 
(3), we can write this as a geometric series:

where floor
(
t

h

)
 is how many times h divides t, ignoring the 

remainder.
For fixed T , v∗

2
 exhibits transient behaviour towards 

the end of the foraging bout due to changes in opportu-
nity cost as the forager runs out of time. Such changes 
in strategy only benefit a forager with fixed and exactly 
known T , which is biologically unrealistic. As long as 
qi ≠ 1, the expected length of the foraging bout is con-
strained by the forager's risk of death, so the expected 
fitness value will converge as T − t becomes large (as the 
expected lifespan of the forager falls below T). We take 
advantage of this by taking the limit limt→∞ of (4) and ap-
plying the identity for the sum of binomial coefficients:

An alternate approach is necessary for environments with 
no hazard (i.e., if qi = 1; see Appendix A).

For h1 ≠ h2, the process is very similar. Setting ai = 
probability of surviving and moving ahead hi time steps,

The total fitness is exactly equal to this quantity: 
Φ({1, 2}) = limt→∞Ft. The same process yields Φ({1}), sub-
stituting the correct expressions for f , a, and b. Finally, we 
set the limiting expressions for Φ({1, 2}) and Φ({1}) equal 
to each other and solve for v∗

2
:

Normalising v1 = 1, this expression gives us the slope 
v∗
2
 as observed in Figure 1. Note that �2 disappears from 

this expression, consistent with previous findings that the 
availability of the lesser resource is irrelevant to the strat-
egy for including it in a forager's diet (Charnov,  1976a; 
Holling, 1959). A similar process yields ṽ:

These quantities define the transitions between different 
regions in our strategy map (Figure 1).

Foraging in patches: Finding GUTs (giving 
up times), GUDs (giving up densities) and 
perceived risk

The same functional form for total fitness can be used 
to calculate optimal patch departure time. Consider an 
environment with one type of patch, encountered at rate 
� and with survival probability q applied for each time 
step in the patch. Instead of a fixed reward, the total re-
turn from foraging in a patch for h time steps is given by 
a function v(h). As before, q0 is the survival probability 
while not in a patch. We assume that v(h) is a saturat-
ing function, reflecting the fact that the patch contains 
finite resources. Applying a method similar to (5) gives 
an expression for the long- term fitness for a strategy of 
foraging in each patch for h time steps:

(3)Ft = f + aFt+h + bFt+1

(4)Ft = f

floor
(
t

h

)
∑
j=0

(
aj

t−jh∑
i=0

(
i+ j

j

)
bi

)

(5)

lim
t→ ∞

Ft =
f

1 − a − b
=

�1q
h
1
v1 + �2

(
1 − �1

)
qh
2
v2

1 − �1q
h
1
− �2

(
1 − �1

)
qh
2
−
(
1 − �1

)(
1 − �2

)
q0

.

(6)Ft = f + a1Ft+h1 + a2Ft+h2 + bFt+1

(7)

lim
t→∞

Ft=
f

1−a1−a2−b

=
�1q

h1
1
v1+�2

(
1−�1

)
q
h2
2
v2

1−�1q
h1
1
−�2

(
1−�1

)
q
h2
2
−
(
1−�1

)(
1−�2

)
q0

.

(8)Φ({1, 2}) = Φ({1})

(9)

�1q
h1
1
+�2

(
1−�1

)
q
h2
2
v∗
2

1−�1q
h1
1
−�2

(
1−�1

)
q
h2
2
−
(
1−�1

)(
1−�2

)
q0

=
�1q

h1
1

1−�1q
h1
1
−
(
1−�1

)
q0

(10)v∗
2
=
q
h1
1
v1

q
h2
2

⎛
⎜⎜⎜⎝

�1

�
q0 − q

h2
2

�

1 − q0 + �1

�
q0 − q

h1
1

�
⎞
⎟⎟⎟⎠
.

(11)Φ({1, 2}) = Φ({2, 1})

(12)ṽ =
q
h1
1
v1

q
h2
2

⎛⎜⎜⎜⎝

�
1 − �1

��
1 − �2

��
q0 − q

h2
2

�
+ q

h2
2
− 1

�
1 − �1

��
1 − �2

��
q0 − q

h1
1

�
+ q

h1
1
− 1

⎞⎟⎟⎟⎠
.

(13)Φ =
�qh

1 − �qh − (1 − �)q0
v(h).
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To find the optimal patch residence time h∗, often re-
ferred to as the GUT or giving up time (Charnov, 1976a), 
we solve for the value of h which maximises the expres-
sion in Equation (13). This expression is the convolution 
of the survival curve with the total fitness return curve. 
h∗ occurs where the derivative of (13) with respect to h 
equals zero (Figure 2). The details depend on the func-
tional form of v(h), but in general this quantity can only 
be attained numerically (Stephens et al., 2008). This pro-
cess is analogous to the procedure used in the Marginal 
Value Theorem, but includes nonlinear effects of hazard.

Experimental studies have used the GUD concept to 
compare the forager's perceived risk of predation in dif-
ferent environments (Bleicher,  2017; Brown,  1988; Brown 
et al.,  1999). For given values of q0, v(h

∗) and h∗, all of 
which can be acquired through GUD experiments, as-
sume the forager is maximising fitness and set Φ = v(h∗) in 
Equation (13) to solve for q∗, the quantitative risk estimate 
that a forager is using to make decisions. This is in con-
trast to traditional GUD analysis, which primarily allow 
qualitative comparison between environments. By also in-
corporating the “background” survival rate q0, we account 
for more realistic experimental/field conditions, whereas 
traditionally a refuge with q0 = 1 (no hazard) is assumed.

To find the GUD, take the patch initial value and sub-
tract the amount harvested over h∗ time steps:

For an environment with two patch types, applying this 
method to each type yields optimal patch residency times 
h∗
1
 and h∗

2
. The Optimal Diet Choice strategy map approach 

developed in the previous section can then be applied to 
the resulting rewards v1

(
h∗
1

)
, v2

(
h∗
2

)
 and residency times h∗

1
 , 

h∗
2
, determining thresholds for including or rejecting the 

patch types from the foraging strategy.

RESU LTS

Analytic expressions for the boundaries between strategy 
regions allow us to explore how strategies change as a func-
tion of environmental parameters. In Figure 3, we plot v∗

2
 

(the threshold value for including v2 when v1 = 1 ) against 

two such parameters, �1 and q0, to illustrate the power of 
this method for exploring the structure of strategy space. 
Increasing �1, the availability of the preferred resource, 
means that the threshold for accepting a secondary re-
source becomes higher, as a forager's chance of missing 
preferred resources increases with �1 . v

∗
2
 increases with q0, 

as the hazard of waiting for preferred resources decreases.

Revisiting and extending a rule of thumb 
for predation

A rule of thumb established by Gilliam and Fraser (1987) 
relates the income rate and the per- unit- time risk as a deci-
sion criterion for including a resource in the diet. This rule 
of thumb assumes no background hazard while waiting to 
encounter resources (in our notation, q0 = 1). The Gilliam 
and Fraser rule of thumb is formulated as follows:

In comparison, our expression for v∗
2
 in (10) yields the fol-

lowing when q0 = 1:

Rewriting q
h1
1
=
(
1−�1

)h1 ≈ 1 − h1�1 and 

q
h2
2
=
(
1−�2

)h2 ≈ 1 − h2�2, where �i is the mortality risk 

from resource i, we find

The expressions in (15) and (17) are equivalent mod-
ulo the difference in how hazard applies to the forager. 
Equations  (16) and (17) capture the correlational hazard 
structure of our model –  once the forager accepts resource 

(14)GUD = v(0) − v(h∗).

(15)v∗
2
=
h2
(
1 − q2

)

h1
(
1 − q1

) .

(16)v∗
2
=

q
h1
1

(
1 − q

h2
2

)

q
h2
2

(
1 − q

h1
1

)

(17)v∗
2
≈

(
1 − h1�1

)
h2�2(

1 − h2�2
)
h1�1

=

(
1 − h1�1

)
(
1 − h2�2

) h2
(
1 − q2

)

h1
(
1 − q1

) .

F I G U R E  2  Total fitness in (13), Φ, plotted against patch residence time h. To obtain the optimal residence time h∗, solve numerically for the 
maximum of this curve, which occurs where dΦ

dh
= 0. For this figure, v(h) = 1− rh

1− r
, r = 0.9, � = 0.8, q = 0.999 and q0 = 0.9999.
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i, it spends hi time steps handling it and survives with prob-
ability qhi

i
 –  and balances the opportunity cost of missing 

one resource while accepting another (Figure 4). However, 
unlike the rule of thumb, our method can include the 
background hazard of waiting for better resources (q0 ≠ 1 ). 
Terms in (10) containing �1 cancel if q0 = 1 (16), but with 
q0 ≠ 1, v∗

2
 becomes sensitive to �1. As �1 becomes sufficiently 

small, v∗
2
 decreases, because the tradeoff between the haz-

ards of taking resources must balance the background 
hazard 1 − q0.

Comparing fitness paradigms

We next consider applications to finite foraging times 
and other fitness paradigms, exploring differences in 

the effect of predation risk as a function of the time 
an organism takes to redeem fitness benefit from re-
sources collected. We compare three cases: EGGS, the 
instantaneous accrual paradigm from the above sec-
tions; the “all or nothing” (AON) paradigm, in which 
a forager must complete a foraging bout and safely 
return home before accruing any fitness benefit; and 
an intermediate version, in which the forager receives 
fitness benefits periodically throughout the bout, or 
PRE (periodic return). The AON paradigm only makes 
sense in finite time, since the probability of surviving 
an infinitely long foraging bout is zero for qi less than 1. 
We develop approximations for EGGS, AON and PRE 
in finite time in order to compare them directly; for 
details on the derivation of these approximations, see 
Appendix B.

F I G U R E  3  Sensitivity of v∗
2
, the threshold value for including v2 when v1 = 1. (a) v∗

2
 is invariant to �2, but sensitive to �1. Darker colours (more 

blue) correspond to higher handling times h2, scaling v∗
2
 to accommodate the additional foregone opportunity. q1 = q2 = 0.9999, and q0 = 0.99995

. h2 ranges from 1 to 5. (b) v∗
2
 is plotted against survival while not foraging, q0. The survival associated with each resource is fixed at q1 = 0.99999 

and q2 = 0.9995. When q0 < q2 (vertical dashed grey line), v∗
2
 takes on negative values, as the forager should trade negative resource values 

for higher safety. Lighter colours associate with higher �1 values, again trading off the opportunity costs of missing a better resource while 
consuming a secondary resource. For (b), h1 = 6 and h2 = 5 . �1 ranges from 0.1 to 0.5.

F I G U R E  4  Gilliam and Fraser‘s rule of thumb (red line) compared to results from our method (Equation 10). When q0 = 1, v∗
2
 is not 

sensitive to �1, and matches the rule of thumb (darker colours). However, as q0 decreases, v∗
2
 increasingly diverges from the rule of thumb as �1 

becomes larger (lighter colours). For this figure, h1 = 6 and h2 = 5.
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In the EGGS paradigm, a special case of the “resource 
allocation” canonical equation (Mangel,  2015), the ex-
pected total fitness for a strategy Z over T time steps, 
ΦEGGS(Z,T ), is the sum of possible outcomes in which the 
organism survives exactly t time steps, where the probabil-
ity of survival until time t for strategy Z, denoted by SZ(t), 
is multiplied by �Z, the expected reward per unit time con-
ditional upon surviving, times t time steps:

In the AON (all- or- nothing) paradigm, a special case of the 
“activity choice” canonical equation (Mangel, 2015), no fit-
ness is gained if the forager dies before returning home, no 
matter how many resources it has collected. For example, 

(18)

ΦEGGS(Z,T ) =

T∑
t=0

t�ZSZ(t).

F I G U R E  5  v∗
2
 against T , derived from the approximations in (32) and (34), for EGGS (purple), AON (yellow) and PRE (green). (a) q1 < q2 , 

with q1 = 0.99992 and q2 = 0.99995, (b) q1 = q2 = 0.99995 and (c) q1 > q2, with q1 = 0.99998 and q2 = 0.99995, the values for EGGS converge to the 
exact value of v∗

2
 from (10) (dashed grey lines). For this figure, �1 = 0.5, h1 = 6, h2 = 5 and q0 = 0.99999. For PRE, � =

T

5
.

F I G U R E  6  v∗
2
 plotted against survival q2 for EGGS (purple), AON (yellow) and PRE (green). Solid lines correspond to q1 = 0.995 and 

dashed lines to q1 = 0.997 . For EGGS, v∗
2
 increases linearly with increasing hazard. For AON and PRE, v∗

2
 remains low, sometimes even negative, 

when accepting resource 2 has significantly lower hazard, and then rapidly increases towards infinity. For this figure, �1 = 0.3, h1 = 6, h2 = 5, 
q0 = 0.999 and T = 10,000. For PRE, � = 500.



   | 9AREHART et al.

an individual worker bee collecting resources for the hive 
will only contribute fitness to the colony if it returns safely 
from a foraging bout. If it survives until time T, the forager 
will stop seeking resources and safely return home (we as-
sume no additional travel time for simplicity). Expected 
total fitness is T multiplied �Z, the expected reward per unit 
time under strategy Z conditional upon surviving, multi-
plied by the probability of surviving until T , SZ(T ):

The PRE paradigm is another special case of the “activ-
ity choice” canonical equation of SDP (Mangel, 2015). For 
example, think of a parent foraging in bouts in order to 
provision offspring. The PRE paradigm is mathematically 
almost identical to AON, except that the time horizon for 
each trip is a fraction � of the total time T. By optimising 
the return of one such bout, we optimise the total fitness, 
so ΦPRE(Z,T ) = ΦAON(Z, �).

We can now directly compare the structure of strat-
egy space for different fitness paradigms, and hence 
for different life- history strategies. v∗

2
 is plotted against 

total foraging time T  (Figure  5). For EGGS, v∗
2
 con-

verges towards the limit we found analytically in (10). 
In the AON paradigm, v∗

2
 diverges as T becomes large: 

any change in survivorship will have an increasing im-
pact over an increasing amount of time, so the tradeoff 
necessary to balance it grows quickly with T . However, 
the direction and magnitude of that change depends 
on the relationship between survival for the two re-
sources. If q2 < q1 , then v∗

2
 increases rapidly. If q2 > q1, v

∗
2
 

increases much more slowly, and may actually decrease 
over time when q2 > > q1, as the forager may be willing 
to reduce total reward accrued in exchange for avoid-
ing dangerous but valuable resources. PRE follows the 
same trends as AON, but at a slower rate.

The relationship between v∗
2
, and survival for each re-

source qi is linear for the EGGS paradigm, but nonlin-
ear in the AON and PRE paradigms (Figure 6). In AON 
and PRE, v∗

2
 maintains a low value when q2 is close to 1, 

before rapidly climbing as q2 decreases. This transition 
occurs where q2 starts to dominate the dynamics of the 
system. This effect becomes more dramatic and switch- 
like as T  becomes large. This suggests that foragers in 
these paradigms will be extremely sensitive to change in 
hazard within specific parameter ranges but will show 
little variability otherwise. The negative values of v∗

2
 in 

Figure 6 reflect that the forager should include resource 
2 in its diet even at a fitness cost due to the lower preda-
tion risk associated with it.

DISCUSSION

We have developed new methods for analysing optimal 
foraging behaviour, integrating nonlinear hazards (which 
previously required computational techniques such as 

stochastic dynamic programming) into an analytically 
tractable framework. We employ our methods to unify and 
extend classical results from rate- maximising optimal for-
aging theory, optimal diet choice theory, SDP and GUDs 
(Brown, 1988). By partitioning environmental parameter 
space into regions associated with specific optimal strate-
gies, we provide a robust framework for analysing risk and 
reward across environments. This enables us to extend the 
rule of thumb from (Gilliam & Fraser, 1987) to account 
for hazards associated with not consuming any resource. 
We demonstrate the power of this approach by applying it 
to different fitness paradigms (methods for accumulating 
fitness which corresponds to different life- history strate-
gies), illuminating structural differences in how optimal 
strategies depend on how fitness accrues.

Our framework does not directly incorporate the notion 
of “state” common to SDP, such as tracking an internal 
level of satiation. In SDP, including state is computation-
ally intensive, especially if several state variables are con-
sidered simultaneously, and often requires discretisation 
of continuous state variable values (Mangel et al.,  1988). 
Recent innovations reduce the computational burden 
(Fackler, 2018; Nicol & Chadès, 2011) or increase the ana-
lytical tractability (Reimer et al., 2019a) of state- dependent 
SDP models. We circumvent this challenge by optimising 
foraging success independent of state, while still incorpo-
rating handling times, stochastic resource encounters and 
the nonlinear effects of hazard (predation risk).

However, strategy maps can be incorporated into 
other modelling methods which track state, as a method 
for determining how a forager should optimally behave. 
For example, a learning forager may attempt to behave 
optimally based on an internal information state (esti-
mates of environmental parameters). The strategy map 
equations return the strategy the forager should follow 
based on its current estimates. Accomplishing this task 
using SDP would involve computing the optimal strat-
egy recursively from the current time step to the final 
time step, at every time step. The strategy map can also 
measure how much the forager's estimates need to be up-
dated before it switches to the optimal strategy (Arehart 
and Adler, In prep). Accomplishing this with SDP would 
require approximation, and involve repeated computa-
tions across many time steps.

Empirical work on animal foraging has produced 
mixed results (Pierce & Ollason,  1987; Pyke,  1984; 
Rechten et al., 1983; Stephens, 2008). One area which 
has proven challenging to integrate into theory is the 
role of learning in optimal foraging. Foragers never 
possess complete information about their environ-
ments and obtaining reliable information, especially 
in complex and changing environments, can be costly. 
A forager may arrive at an environment with little or 
no prior knowledge. Depending on the complexity 
and variability of the environment, it may take a lot 
of sampling for a forager to develop realistic estimates 
for the quality or availability of resources. Learning 

(19)ΦAON(Z,T ) = T�ZSZ(T ).
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organisms must partition effort between increasing the 
accuracy of estimates and maximising benefits given 
those estimates. This is the explore- exploit tradeoff 
(Eliassen et al., 2007; Sutton & Barto, 2018), in which 
foragers trade some reward value for better informa-
tion. Our approach places quantitative bounds on the 
value of information: Since strategies are discrete, 
forager's estimates of environmental parameters need 
only fall in the correct strategy region for the correct 
optimal strategy to be determined.

Our framework could be helpful for designing for-
aging experiments. Using estimates of quantities such 
as the quality of resources and handling times or patch 
departure times, experimentalists could identify regions 
of parameter space where strategy is expected to change. 
Quantitative measurements of GUD can be used to ex-
plicitly calculate a forager's perceived risk by inputting 
h∗, the experimentally derived GUD, into Equation  13 
and solving for transitions between “strategy regions.” 
Strategy transition thresholds can even be mapped ex-
plicitly onto a landscape, similar to constructing a 
Landscape of Fear (Laundré et al.,  2010). This could 
open up new avenues for analysing the spatial distribu-
tion and movement ecology of species across landscapes.

As researchers have increasingly turned their atten-
tion towards mechanisms for making decisions (Budaev 
et al., 2019; Fawcett et al., 2013; Pierce & Ollason, 1987), a 
need has arisen for a bridge between calculating optimal 
strategies and methods by which animals may actually 
make decisions, especially with imperfect information. 
The strategy maps method offers a dynamic decision 
rule which may have some functional analogue in how 
foragers actually make decisions. These concepts could 
be tested experimentally by presenting a forager with a 
series of diet choice decisions or through patch deple-
tion. By changing environmental variables over time and 
tracking the changes in a forager's strategy, it may be 
possible to uncover the dynamics of a forager's decision 
threshold. Finally, many foragers make decisions and ex-
ploit resources collectively (Falcón- Cortés et al.,  2019). 
Strategy maps could be combined with information up-
dating rules as well as resource dynamics (such as deple-
tion of resources or increased handling times resulting 
from forager exploitation) to model the collective be-
haviour of foragers.
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A PPEN DI X A

A.1 | FINDING v∗
2
 WITH NO HAZARD

In cases where qi = 1 for all i, Ft does not converge and 
the method used to derive Equation (10) breaks down. To 
find v∗

2
 in cases with no hazard, we return to the original 

SDP formulation with backward iteration, and identify 
v∗
2
 as the transition value at which the max condition in 

the second term of (1) turns into an equality:

where Ft equals rewards accrued from time t through the 
final time step T, rather than from the beginning. We as-
sume v1 = 1 without loss of generality, normalising the 
value of v2. We use the approximation �t = Ft, where � is 
a constant for the per- unit- time return of a given strategy. 
Then Ft+hi = �

(
t + hi

)
, and (2) becomes:

Solving the system of Equations (20) and (21) gives

This is exactly the result obtained by discretising 
Holling's Disc Equation, which relates the role of 
handling time (hi) and the encounter rate of the pre-
ferred resource (�1) to an optimal foraging strategy 
(Charnov,  1976b; Holling,  1959). The expression for 
v∗
2
 does not include �2, which also agrees with previ-

ous findings that the criterion for including a re-
source depends only upon the resources better than 
it, rather than upon the availability of the resource 
itself (Lucas,  1983; MacArthur & Pianka,  1966; 
Nonacs, 2001).

A PPEN DI X B

B.1 | COMPUTING v∗
2
 WITH CONVERGENT 

APPROXIMATION
It is possible to solve for ΦEGGS and ΦAON exactly for 
finite T  (i.e., not taking the limit as t→ − ∞), using 
variations of equation  (4). However, we use an ap-
proximation which is accurate for realistic choices of 
parameter values, and allows for analytical sensitivity 
analysis. To compare the differences between fitness 
paradigms in finite time, we derive time- dependent 
expressions to approximate the total fitness functions. 
Our approximations make the following two simplify-
ing assumptions:

(20)v∗
2
+ Ft+h2 = Ft+1,

(21)

�t=�1

(
1−�2

)
max

((
1+�

(
t+h1

))
q
h1
1
, �(t+1)q0

)
+

�2

(
1−�1

)
max

((
v∗
2
+�

(
t+h2

))
q
h2
2
, �(t+1)q0

)
+

�1�2max
((
v1+�

(
t+h1

))
q
h1
1
,
(
v∗
2
+�

(
t+h2

))
q
h2
2
, �(t+1)q0

)
+(

1−�1

)(
1−�2

)
�(t+1)q0.

(22)v∗
2
=

�1

(
h2 − 1

)

1 + �1

(
h1 − 1

) .
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1. The forager may initiate the foraging bout in any 
action state with equal probability. States include 
encountering a resource (or no resources) or being 
at any of the hi time steps during the handling time 
for resource i.

2. Whether or not the forager survives a given time step is 
determined by an independent random variable based 
on the average survival for a strategy. This makes han-
dling time geometrically distributed, an approxima-
tion commonly employed in optimal foraging models.

Incorporating these assumptions eliminates the arte-
facts mentioned above that occur when foraging initiates 
or approaches termination, but still captures the overall 
behaviour of the system. We define pi = probability of 
being in state i, where state i = consuming resource i, 
with i = 0 corresponding to not consuming a resource. 
To compute pi, we first construct AZ, the Markov tran-
sition matrix between states 0, 1 and 2, conditional on 
being alive (qi = 1 for all i), corresponding to strategy Z. 
For example, A{1,2} is

where each column sums to 1. The stationary distribu-
tion of the system for strategy {1, 2}, given by the right 
eigenvector of (23) corresponding to the eigenvalue of 
1, is

With no hazard (qi = 1), the pi sum to 1. For qi ≠ 1, the 
system becomes an absorbing Markov process, so find-
ing the steady state is not informative (the steady state is 
death). We perturb A to find the effect of qi on the sys-
tem, following Caswell (1980). Starting with the standard 
eigenvalue relation Ap = eA, in which p is the right eigen-
vector of A and e is the corresponding dominant eigen-
value (we use nonstandard notation here because � and v 
are already in use), we formally differentiate and left mul-
tiply by w⊤, where w⊤ is the transpose of w = < 1,1,1 >:

Solving for the first- order sensitivity, we obtain:

where Δi = 1 − qi. The similarity between this expression 
and the right eigenvalues (24– 26) suggests our formulation 
for PZ, which approximates the probability of survival per 
unit time:

the probability of being in each state included in Z multi-
plied by the survival per time step for that state. Because 
the pi depend on strategy, so does survival. pi and PZ for 
other strategies are constructed in the same manner. This 
is a first- order approximation, and does not capture the 
correlational structure of the actual foraging process, 
in which taking a resource i requires a full hi time steps. 
However, it captures the overall survival well when the hi 
are small relative to the timescale of interest, and for qi suf-
ficiently close to 1 for Δe to remain small. To approximate 
the fitness gained over time, we compute �Z, the expected 
per- time step payoff of strategy Z conditional on being 
alive:

This is the probability of being in state i, pi, multiplied by 
state i 's payoff per time step, vi

hi
. Substituting into the total 

fitness function from (18),

as the partial sum of the geometric series. We set 
ΦEGGS({1, 2},T ) = ΦEGGS({1},T ) and solve for v2 (which 
appears in �Z) to obtain:

where the subscript in pi,Z is pi computed for strategy Z . 
For the AON paradigm, we substitute the values for PZ 
and �Z into (19), yielding

(23)

A{1,2} =

⎛⎜⎜⎜⎜⎜⎝

�
1−�1

��
1−�2

� 1

h1

�
1−�1

��
1−�2

� 1

h2

�
1−�1

��
1−�2

�

�1
1

h1

�
h1+�1−1

� �1

h2

�2

�
1−�1

� 1

h1
�2

�
1−�1

� 1

h2

�
h2+�2

�
1−�1

�
−1

�

⎞⎟⎟⎟⎟⎟⎠

(24)p0 =

(
1 − �1

)(
1 − �2

)

h1�1 + h2�2
(
1 − �1

)
+
(
1 − �1

)(
1 − �2

)

(25)p1 =
h1�1

h1�1 + h2�2
(
1 − �1

)
+
(
1 − �1

)(
1 − �2

)

(26)p2 =
h2�2

(
1 − �1

)

h1�1 + h2�2
(
1 − �1

)
+
(
1 − �1

)(
1 − �2

) .

(27)w⊤(ΔA)p + w⊤A(Δp) = ew⊤(Δp) + w⊤p(Δe).

(28)

Δe=
w⊤(ΔA)

w⊤p

=
−
(
Δ0

(
1−𝜆1

)(
1−𝜆2

))
+Δ1h1𝜆1+Δ2h2𝜆2

(
1−𝜆1

)

h1𝜆1+h2𝜆2
(
1−𝜆1

)
+
(
1−𝜆1

)(
1−𝜆2

) ,

(29)PZ =
∑
i∈Z

piqi ,

(30)�Z =
∑
i∈Z

pivi

hi
.

(31)ΦEGGS(Z,T ) =

T∑
t=0

t�Z
(
PZ

)t
= t�

1 − PT+1
Z

1 − PZ

(32)

v∗
2,EGGS

=
h2

h1p2,{1,2}

⎛⎜⎜⎜⎝
p1,{1}

�
1 − PT+1

{1}

��
1 − P{1,2}

�
�
1 − PT+1

{1,2}

��
1 − P{1}

� − p1,{1,2}

⎞⎟⎟⎟⎠
,
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Solving for v∗
2
:

The PRE paradigm is identical to AON, but applied to the 
foraging bout length � instead of the total foraging time. 
To find ṽ, set the expressions for strategies {1, 2} and {2, 1} 
equal, and solve for v2

v1
.

A PPEN DI X C

C.1 | MODEL SETUP
Examples of the foraging process. Foragers encounter 
multiple, single or no resources in discrete time. If a for-
ager accepts resource i, it receives reward vi and advances 
hi time steps, surviving with probability qhi

i
. On the top 

row, a forager follows the strategy {2, 1}, accepting yellow 
when available but taking blue if it appears with no yellow. 
The forager accepts blue (resource type 1) on the first time 

step, proceeding h1 time steps while handling the resource, 
then encounters a yellow (resource type 2), proceeding h2 
time steps to find another yellow, and so on. On the bot-
tom row, a forager follows strategy {2}, only taking yel-
low; the forager skips the first blue flower, then accepts 
a yellow, proceeding h2 timesteps, where it encounters no 
resources, so must wait until another yellow appears. This 
forager is unlucky and does not survive past this resource.

C.2 | THE FORAGING ALGORITHM

 1. At time t, encounter each resource i with prob-
ability �i.

 2. If resources are encountered, either:
 a. Choose one resource to consume according 

to strategy Z. Survive with probability qhi
i

 
and advance hi time steps. Total resources 
collected increase by vi

 b. Forego all resources and survive with 
probability q0 and advance 1 time step.

 3. If no resources are encountered, survive with 
probability q0 and advance 1 time step.

 4. Repeat until t = T  or the forager dies.

(33)ΦAON(Z,T ) = T�ZP
T
Z
.

(34)v∗
2,AON

=
h2

h1p2,{1,2}

((
P{1}

P{1,2}

)T

− p1,{1,2}

)
.


	Strategy maps: Generalised giving-­up densities for optimal foraging
	Abstract
	INTRODUCTION
	METHODS
	Mathematical framework
	Strategy maps
	Computing  and 
	Foraging in patches: Finding GUTs (giving up times), GUDs (giving up densities) and perceived risk

	RESULTS
	Revisiting and extending a rule of thumb for predation
	Comparing fitness paradigms

	DISCUSSION
	AUTHOR CONTRIBUTIONS
	PEER REVIEW
	DATA AVAILABILITY STATEMENT

	REFERENCES


